LEADER |
03892nam a22003257a 4500 |
001 |
1506496 |
041 |
|
|
|a eng
|
100 |
|
|
|9 537622
|a حسني، هند حسين
|e مؤلف
|
245 |
|
|
|a A Machine Learning Approach to Identify Extremism in Arabic Opinions
|
246 |
|
|
|a أسلوب مبني على تعلم الآلة لتحديد التطرف في الآراء العربية
|
260 |
|
|
|a إربد
|c 2019
|
300 |
|
|
|a 1 - 96
|
336 |
|
|
|a رسائل جامعية
|
502 |
|
|
|b رسالة ماجستير
|c جامعة اليرموك
|f كلية تكنولوجيا المعلومات وعلوم الحاسوب
|g الاردن
|o 0082
|
520 |
|
|
|a لقد سمح الاستخدام المتزايد للإنترنت والشبكات الاجتماعية للناس بالتعبير عن وجهات نظرهم، مما أدى إلى زيادة الاهتمام في الآونة الأخيرة. تستخدم تقنيات تحليل المشاعر لتحديد قطبية المعلومات، إما إيجابية أو سلبية، تجاه موضوع معين، بما في ذلك الآراء. في هذا البحث، أدخلنا منهجا تعليميا آليا يعتمد على (NB) Naïve ,(SVM) Support Vector Machine Bayesو(RF) Random Forest، لإيجاد وتصنيف الآراء المتطرفة في المراجعات العربية. لتحقيق ذلك، تم جمع مجموعة من (1500) مراجعة باللغة العربية من متجر. Google Play بالإضافة إلى ذلك، تم تطبيق عملية التصنيف على مرحلتين لتصنيف المراجعات. في المرحلة الأولى. قمنا ببناء مصنف ثنائي لفرز إيجابي من الحالات السلبية. في المرحلة الثانية، قمنا بتطبيق آلية التصنيف الثنائي على أساس مجموعة من القواعد المقترحة التي تميز الإيجابي المتطرف عن المراجعات الإيجابية، والسلبية المتطرفة من المراجعات السلبية. أجريت أربع تجارب رئيسية مع ما مجموعه 10 تجارب فرعية مختلفة للحصول على عملية من مرحلتين باستخدام مخططات: X-Validation المختلفة وطريقة اختيار ميزة. TF-IDF وقد أشارت النتائج التي تم الحصول عليها إلى أن SVM كان الأفضل خلال تصنيف المرحلة الأولى مع بيانات اختبار 30%، وكان NB الأفضل مع بيانات اختبار 20%. أشارت نتائج تصنيف المرحلة الثانية إلى أن SVM قد حققت نتائج أفضل عند التعامل مع مجموعة البيانات الإيجابية مع دقة شاملة بلغت 68.7% وأظهر NB دقة أفضل عند التعامل مع مجموعة البيانات السلبية، مع دقة إجمالية بلغت 72.8%.
|
653 |
|
|
|a تعلم الآلة
|a التطرف الفكري
|a الشبكات الاجتماعية
|a تقنيات تحليل المشاعر
|a الإنترنت
|a المراجعات العربية
|
700 |
|
|
|9 249320
|a شواقفة، عماد محمود
|q Shawaqfah, Emad Mahmoud
|e مشرف
|
856 |
|
|
|u 9802-003-012-0082-T.pdf
|y صفحة العنوان
|
856 |
|
|
|u 9802-003-012-0082-A.pdf
|y المستخلص
|
856 |
|
|
|u 9802-003-012-0082-C.pdf
|y قائمة المحتويات
|
856 |
|
|
|u 9802-003-012-0082-F.pdf
|y 24 صفحة الأولى
|
856 |
|
|
|u 9802-003-012-0082-1.pdf
|y 1 الفصل
|
856 |
|
|
|u 9802-003-012-0082-2.pdf
|y 2 الفصل
|
856 |
|
|
|u 9802-003-012-0082-3.pdf
|y 3 الفصل
|
856 |
|
|
|u 9802-003-012-0082-O.pdf
|y الخاتمة
|
856 |
|
|
|u 9802-003-012-0082-R.pdf
|y المصادر والمراجع
|
856 |
|
|
|u 9802-003-012-0082-S.pdf
|y الملاحق
|
930 |
|
|
|d y
|
995 |
|
|
|a Dissertations
|
999 |
|
|
|c 996929
|d 996929
|