المستخلص: |
تناولت هذه الدراسة المفاضلة بين نماذج بوكس- جنكنز ونماذج الشبكات العصبية للتنبؤ في السلاسل الزمنية، وقد تم التطبيق على بيانات القطاع الصحي التشادي ممثلة في السلاسل الزمنية لمرض الملاريا للفترة (2004- 2015 م). حيث يعتبر مرض الملاريا من الأمراض الواسعة الانتشار خاصة في المناطق التي تكثر فيها الأمطار، حيث كان الهدف من هذه الدراسة المفاضلة بين الأساليب المستخدمة للتنبؤ في السلاسل الزمنية ودقة التنبؤات المتحصل عليها باستخدام نماذج بوكس جنكنز ونماذج الشبكات العصبية، وقد توصل الباحث إلى أن أفضل نموذج ممثل للبيانات هو ARIMA (1.1.0) في حالة نماذج بوكس جنكنز أما في حالة نماذج الشبكات العصبية فإن شبكة البيرسبترون متعدد الطبقات ((MLP، والتي تكونت بنيتها المعمارية من ثلاثة طبقات (طبقة مدخلات (2)، طبقة خفية (3)، طبقة مخرجات (1)، واستخدمت الدالة اللوجستية كدالة تحفيز في الطبقة الخفية وفي طبقة المخرجات، واستخدمت لتدريب هذه الشبكة خوارزمية الانتشار السريع. وقد وجد أن نموذج ARIMA (1.1.0)أفضل من نموذج ANN[2-3-1] في التنبؤ بعدد حالات الإصابة الشهرية بمرض الملاريا في تشاد. وقد أظهرت نماذج بوكس- جنكنز تفوقا واضحا على نماذج الشبكات العصبية في السلسلة الزمنية محل الدراسة، وذلك لامتلاكه أقل قيم عند المقارنة اعتمادا على معامل أكايكي ومقياس متوسط الخطأ المطلق ومعامل التحديد. وقد أوصت الدراسة باستخدام نماذج بوكس- جنكنز في السلاسل الزمنية الأقل تعقيدا، وكلما ارتفعت درجة التعقيد في السلسلة يفضل استخدام نماذج الشبكات العصبية. أما في حالة البيانات التي تعاني من الاضطرابات وعدم ثبات التباين فإنه يفضل استخدام نماذج الشبكات العصبية على نماذج بوكس جنكنز وفي حالة لم يكن طول السلسلة الزمنية كافيا بحيث تظهر كل التغيرات بوضوح فإنه يفضل استخدام نماذج بوكس- جنكنز على نماذج الشبكات العصبية.
|