0
سلة النتائج
0
سلة النتائج
مرحبا !
|
تسجيل خروج
Guest Login
دخول
اللغة:
English
Arabic
القواعد
المجلات
المؤتمرات
التقرير السنوي للاكثر تحميلا
2024
2023
2022
2021
الدعم الفني
المساعدة
تم إضافة تقرير جديد 2024
ارسل ملاحظاتك
ارسل ملاحظاتك لنا
الإسم
Please enable JavaScript.
البريد الإلكتروني
الملاحظات
أدخل نص رمز التحقق
الرئيسية
>
مؤلف
>
اسكندر، صبيح وديع
عرض
1
-
6
من
6
للبحث:
'اسكندر، صبيح وديع'
, وقت الاستعلام: 0.69s
ترتيب
الصلة
التاريخ تنازليا
التاريخ تصاعديا
الاحدث إضافة
المؤلف
العنوان
اختر الصفحة
|
مع الاختيارات:
1
اختر هذا السجل
Soft Semi Totally Continuity in Soft Topological Spaces
إضافة إلى سلة النتائج
حفظ في:
العنوان بلغة أخرى:
شبه الاستمرارية التامة الناعمة في الفضاءات التبولوجية الناعمة
المؤلف:
اسكندر
،
صبيح
وديع
المصدر:
مجلة التربية والعلم
, مج32, ع4
الناشر:
جامعة الموصل - كلية التربية
تاريخ:
2023
نوع المحتوى:
بحوث ومقالات
الصفحات:
71 - 80
المستخلص:
التطبيقات شبه المستمرة التامة الناعمة والتي عرفناها في هذه الدراسة في الفضاءات التبولوجية الناعمة هي من التطبيقات المستمرة التامة الناعمة، حيث قمنا بأثبات مجموعة من الأفكار للتطبيق...
المستخلص الكامل
الناشر لهذه المادة لم يسمح بإتاحتها.
2
اختر هذا السجل
I-Generalized Homeomorphisms and Generalized I- Homeomorphisms in Topological Spaces
إضافة إلى سلة النتائج
حفظ في:
العنوان بلغة أخرى:
التشاكلات المعممة من النوع-I والتشاكلات من النوع-I المعممة في الفضاءات التبولوجية
المؤلف:
اسكندر
،
صبيح
وديع
المصدر:
مجلة التربية والعلم
, مج27, ع4
الناشر:
جامعة الموصل - كلية التربية
تاريخ:
2018
نوع المحتوى:
بحوث ومقالات
الصفحات:
151 - 160
المستخلص:
في هذا البحث، تم تقديم التشاكلات المعممة من النوع- i والتشاكلات من النوع- i المعممة في الفضاءات التبولوجية. أكثر من ذلك تم إيجاد العلاقة بين هذين الصنفين وبعض الأصناف الأخرى من الت...
المستخلص الكامل
الناشر لهذه المادة لم يسمح بإتاحتها.
3
اختر هذا السجل
On I-Continuous Functions
إضافة إلى سلة النتائج
حفظ في:
العنوان بلغة أخرى:
حول الدوال المستمرة من النوع-I
المؤلف:
اسكندر
،
صبيح
وديع
المصدر:
مجلة التربية والعلم
, مج28, ع2
الناشر:
جامعة الموصل - كلية التربية
تاريخ:
2019
نوع المحتوى:
بحوث ومقالات
الصفحات:
282 - 288
المستخلص:
في هذا البحث نبرهن بأن الدالة f: (X, ) (Y, ) تكون مفتوحة من النوع–i إذا كانت شاملة، متباينة ومستمرة من النوع–i من الفضاء التبولوجي (X, ) المتراص من النوع–i إلى الفضاء (Y, ) م...
المستخلص الكامل
الناشر لهذه المادة لم يسمح بإتاحتها.
4
اختر هذا السجل
دراسة ميدانية باستخدام بعض خصائص وتطبيقات المجاميع المفتوحة الناعمة من النمط - ii
إضافة إلى سلة النتائج
حفظ في:
العنوان بلغة أخرى:
A Field Study Using Some Properties and Applications of Soft ii-Open Sets
المؤلف:
داود، افين باسل
المصدر:
مجلة التربية والعلم
, مج33, ع1
الناشر:
جامعة الموصل - كلية التربية
تاريخ:
2024
نوع المحتوى:
بحوث ومقالات
الصفحات:
58 - 73
المستخلص:
قدمنا في هذا البحث طريقة جديدة لجمع البيانات وإجراء العمليات الحسابية عليها للحصول على النتائج المطلوبة بشكل مختلف عن السابق، في البداية سنعرف أصنافا جديدة من المجاميع الناعمة في ا...
المستخلص الكامل
الناشر لهذه المادة لم يسمح بإتاحتها.
5
اختر هذا السجل
I-Open Sets and Separating Axioms Spaces
إضافة إلى سلة النتائج
حفظ في:
العنوان بلغة أخرى:
المجاميع المفتوحة من النوع-I وفضاءات بديهيات الانفصال
المؤلف:
محمد، عامر عبدالإله
المصدر:
مجلة التربية والعلم
, مج27, ع4
الناشر:
جامعة الموصل - كلية التربية
تاريخ:
2018
نوع المحتوى:
بحوث ومقالات
الصفحات:
128 - 145
المستخلص:
الهدف من هذا البحث هو استخدام نوع من المجاميع المفتوحة المسماة بالمجاميع المفتوحة من النوع-i [9] لدراسة عدة أصناف من فضاءات بديهيات الانفصال للمجاميع المفتوحة، المفتوحة من النوع-a...
المستخلص الكامل
الناشر لهذه المادة لم يسمح بإتاحتها.
6
اختر هذا السجل
𝒉𝜶-Open Sets in Topological Spaces
إضافة إلى سلة النتائج
حفظ في:
العنوان بلغة أخرى:
المجاميع المفتوحة من النمط - ha في الفضاءات التبولوجية
المؤلف:
عبدالله، بيداء سهيل
المصدر:
مجلة التربية والعلم
, مج31, ع3
الناشر:
جامعة الموصل - كلية التربية
تاريخ:
2022
نوع المحتوى:
بحوث ومقالات
الصفحات:
91 - 98
المستخلص:
في هذا البحث قدمنا صنفا جديدا من المجاميع المفتوحة والذي عرفناه بالشكل الآتي: لكل مجموعة مفتوحة غير خالية M في X، M≠X و∝M ∈τ، بحيث أن⊆ int (A∪M) A، عندئذ يقال للمجموعة A بأنها مفتو...
المستخلص الكامل
الناشر لهذه المادة لم يسمح بإتاحتها.
اختر الصفحة
|
مع الاختيارات:
أدوات البحث:
خلاصات
أرسل نتيجة البحث بالإيميل
×
دليل المستخدم
دليل الفيديو