ارسل ملاحظاتك

ارسل ملاحظاتك لنا









Handling Missing Data in the Association Marginal Model through Longitudinal Data Analysis: A Simulation Study

المصدر: مجلة كلية التجارة للبحوث العلمية
الناشر: جامعة الإسكندرية - كلية التجارة
المؤلف الرئيسي: El-Zayat, Mahi Mohssen Younes Mohamed (Author)
مؤلفين آخرين: Halawa, Adel M. (Co-Author) , El-Attar, Labiba (Co-Author) , Hassan, Emtissal Mohamed (Co-Author)
المجلد/العدد: مج56, ع3
محكمة: نعم
الدولة: مصر
التاريخ الميلادي: 2019
الشهر: يوليو
الصفحات: 189 - 214
DOI: 10.21608/ACJ.2019.47782
ISSN: 1110-7588
رقم MD: 1032035
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EcoLink
مواضيع:
كلمات المؤلف المفتاحية:
Association Model "A" | Marginal Model "M" | Simultaneous AM Model | Missing Data "MS" | Ordinal Data | Composite Link Function | Generalized Linear Models "GLM" | CC | Mode Imputation | LOCF | KNNI | MI | Longitudinal Studies
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02839nam a22002657a 4500
001 1769255
024 |3 10.21608/ACJ.2019.47782 
041 |a eng 
044 |b مصر 
100 |9 559370  |a El-Zayat, Mahi Mohssen Younes Mohamed  |e Author 
245 |a Handling Missing Data in the Association Marginal Model through Longitudinal Data Analysis:  |b A Simulation Study 
260 |b جامعة الإسكندرية - كلية التجارة  |c 2019  |g يوليو 
300 |a 189 - 214 
336 |a بحوث ومقالات  |b Article 
520 |b Missing data can frequently occur in a longitudinal data analysis, where repeated measurements are taken over time. Unfortunately, missing data can lead to large standard errors in parameter estimates because nonresponse is compounded across times of data collection to produce small longitudinal sample sizes. Also, the problems of survey nonresponse (i.e., reduction in statistical power and threat of parameter bias) are a particularly salient challenge for longitudinal researchers. Thus, the main goal of this paper is to introduce a new idea that describes simultaneously the association structure (A) with the marginal distributions (M) of the responses for longitudinal data in the presence of missing data (MS), through a composite link. This new idea (AM-MS) is of great importance where it is applicable for large and sparse tables. In addition, it can also be used for fitting log linear models to contingency tables with missing data (MS) and fitting models with various assumptions about the missing data mechanisms either MCAR, MAR or NMAR. A simulation study will be performed to apply this new idea, under various situations including (missing mechanisms, missing rates and five methods for handling missing data). The goodness-of-fit test statistics and the number of adjusted residuals greater than 2 are used as evaluation criteria. 
653 |a نموذج الهامش الترابطي  |a البيانات الأصلية  |a الدراسات الطولية 
692 |b Association Model "A"  |b Marginal Model "M"  |b Simultaneous AM Model  |b Missing Data "MS"  |b Ordinal Data  |b Composite Link Function  |b Generalized Linear Models "GLM"  |b CC  |b Mode Imputation  |b LOCF  |b KNNI  |b MI  |b Longitudinal Studies 
773 |4 إدارة الأعمال  |6 Business  |c 006  |e Journal of the Faculty of Commerce for Scientific Research  |f Maǧallaẗ Kulliyyaẗ Al-Tiǧāraẗ li-l-Buḥūṯ Al-ʿilmiyyaẗ  |l 003  |m مج56, ع3  |o 1049  |s مجلة كلية التجارة للبحوث العلمية  |v 056  |x 1110-7588 
700 |9 342770  |a Halawa, Adel M.  |e Co-Author 
700 |9 559376  |a El-Attar, Labiba  |e Co-Author 
700 |9 339177  |a Hassan, Emtissal Mohamed  |e Co-Author 
856 |u 1049-056-003-006.pdf  |n https://acjalexu.journals.ekb.eg/article_47782.html 
930 |d n  |p y 
995 |a EcoLink 
999 |c 1032035  |d 1032035 

عناصر مشابهة