ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Data Mining Techniques for Prediction of Concrete Compressive Strength (CCS)

العنوان بلغة أخرى: تقنيات التنقيب في البيانات للتنبؤ بالقوة الانضغاطية الخرسانية
المصدر: المجلة الفلسطينية للتكنولوجيا والعلوم التطبيقية
الناشر: جامعة القدس المفتوحة
المؤلف الرئيسي: أبو زر، يوسف صالح يوسف (مؤلف)
المؤلف الرئيسي (الإنجليزية): Abu Zir, Yousef Saleh
مؤلفين آخرين: أبو زر، يوسف صالح يوسف (م. مشارك)
المجلد/العدد: ع3
محكمة: نعم
الدولة: فلسطين
التاريخ الميلادي: 2020
الشهر: كانون الثاني
الصفحات: 57 - 72
DOI: 10.33977/2106-000-003-006
ISSN: 2520-7431
رقم MD: 1034363
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
تعدين البيانات | قوة الضغط الخرسانية | خوارزمية K-Means | خريطة كوهن ذاتية التنظيم (KSOM) | Data Mining | Concrete Compressive Strength (CCS) | K-Means | EM Algorithm | Kohonen’s Self-Organizing Map (KSOM) | Clustering
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 03611nam a22002657a 4500
001 1771654
024 |3 10.33977/2106-000-003-006 
041 |a eng 
044 |b فلسطين 
100 |a أبو زر، يوسف صالح يوسف  |g Abu Zir, Yousef Saleh  |e مؤلف  |9 560648 
245 |a Data Mining Techniques for Prediction of Concrete Compressive Strength (CCS) 
246 |a تقنيات التنقيب في البيانات للتنبؤ بالقوة الانضغاطية الخرسانية 
260 |b جامعة القدس المفتوحة  |c 2020  |g كانون الثاني 
300 |a 57 - 72 
336 |a بحوث ومقالات  |b Article 
520 |a هدف البحث الرئيس، هو استخدام تقنيات استخراج البيانات لاكتشاف العوامل الرئيسية التي توثر في قوة مزيج الخرسانة. إن جل اهتمامنا في هذا البحث، هو إيجاد بعض العوامل التي توثر في الأداء العالي للخرسانة لزيادة مزيج قوة ضاغطة الخرسانة. لتحقيق هذا الهدف، استخدمنا أداة Waikato's Environment Analysis Environment (WEKA) وخوارزميات مثل K-Means وخريطة كوهن ذاتية التنظيم (KSOM) و EM لتحديد العوامل الأكثر تأثير والتي تزيد من قوة مزيج الخرسانة. أظهرت نتائج هذا البحث أن EM يظهر أهمية كبيرة لتحديد المكونات الرئيسية التي تؤثر في قوة الضغط للمزيج الخرساني عالي الأداء. بينما تعد الخوارزميات K-Means و KSOM نموذجا تنبؤيا متقدما لقوة الخلطة الخرسانية. 
520 |b The main aim of this research is to use data mining techniques to explore the main factors affecting the strength of concrete mix. In this research, we are interested in finding some of the factors that influence the high performance of concrete to increase the Concrete Compressive Strength (CCS) mix. We used Waikato’s Knowledge Analysis Environment (WEKA) tool and algorithms such as K-Means, Kohonen’s Self Organizing Map (KSOM) and EM to identify the most influential factors that increase the strength of the concrete mix. The results of this research showed that EM is highly capable of determining the main components that affect the compressive strength of high performance concrete mix. The other two algorithms, K-Means and KSOM, were noted to be an advanced predictive model for predicting the strength of the concrete mix. 
653 |a الخرسانة  |a الخلطة الخرسانية  |a القوة الانضغاطية الخرسانية  |a تعدين البيانات  |a تقنيات تنقيب البيانات  |a تقنيات استخراج البيانات  |a خوارزمية K-Means  |a خريطة كوهن ذاتية التنظيم (KSOM) 
692 |a تعدين البيانات  |a قوة الضغط الخرسانية  |a خوارزمية K-Means  |a خريطة كوهن ذاتية التنظيم (KSOM)  |b Data Mining  |b Concrete Compressive Strength (CCS)  |b K-Means  |b EM Algorithm  |b Kohonen’s Self-Organizing Map (KSOM)  |b Clustering 
773 |c 006  |e Palestinian Journal of Technology and Applied Sciences  |l 003  |m ع3  |o 2106  |s المجلة الفلسطينية للتكنولوجيا والعلوم التطبيقية  |v 000  |x 2520-7431 
700 |a أبو زر، يوسف صالح يوسف  |g Abu Zir, Yousef Saleh  |e م. مشارك  |9 560648 
856 |u 2106-000-003-006.pdf 
930 |d y  |p y  |q n 
995 |a science 
999 |c 1034363  |d 1034363 

عناصر مشابهة