المستخلص: |
يعتبر تقييم مخاطر الائتمان من الركائز الأساسية في عمل المؤسسات المالية بشكل عام والبنوك بشكل خاص، ومع تزايد استخدام التجارة الإلكترونية وبطاقات الائتمان من قبل المستخدمي زاد الاهتمام من قبل المؤسسات المالية لتقييم مخاطر الائتمان التي من شأنها التقليل من المخاطر التي قد تواجههم. وتقوم المؤسسات المالية باستخدام منهجيات مختلفة لتقييم مخاطر الائتمان مثل النهج التقليدي الإحصائي، وأشجار القرار، ودعم الأجهزة والخوارزمية الجينية والشبكات العصبية. ومن أجل تطوير الأنظمة المستخدمة لتقييم مخاطر الائتمان وزيادة نسبة الدقة في تقييمها قمنا في هذه الرسالة بدراسة وتحليل 8 نماذج لتقييم مخاطر الائتمان وذلك من خلال تطبيقها على البيانات غير المتوازنة (بيانات الائتمان الألمانية والبيانات الائتمانية الأسترالية). في هذه الرسالة تم دمج 4 خوارزميات وهي شجرة القرار، الغابة العشوائية، شعاعي أساس الوظيفة ومتعدد الطبقات مع خوارزميات التصنيف وهي خوارزمية التمهيد التجميعي وتكيف تعزيز الجهود ومن خلال هذا الدمج تم اختبار وتحليل ال 8 نماذج لتقييم مخاطر الائتمان أظهرت النتائج في هذه الرسالة أن النموذج الأفضل لتقييم مخاطر الائتمان على البيانات الائتمانية الألمانية هو النموذج الذي تم فيه دمج خوارزمية الطبقات المتعددة مع التمهيد التجميعي وذلك لأنها حققت أعلى نتائج في المقاييس الثلاث وهي الدقة والخصوصية والحساسية بينما عند تطبيق النماذج 8 على البيانات الائتمانية الأسترالية كان النموذج الأفضل هو النموذج الذي جمع بين خوارزمية C4.5 وخوارزمية التمهيد التجميعي.
|