ارسل ملاحظاتك

ارسل ملاحظاتك لنا







A Proposed Framework to Audit of Expected Credit Loss "ECL" Estimate Uncertainty

المصدر: مجلة الدراسات والبحوث التجارية
الناشر: جامعة بنها - كلية التجارة
المؤلف الرئيسي: Shaaban, Mohamed Shaaban Ibrahim (Author)
مؤلفين آخرين: Zein, Ali Ahmed Mostafa (Co-Author) , Elmeligy, Hisham Hassan (Co-Author) , Gaber, Hanan Hassan (Co-Author)
المجلد/العدد: س40, ع3
محكمة: نعم
الدولة: مصر
التاريخ الميلادي: 2020
الصفحات: 1379 - 1409
ISSN: 1110-1547
رقم MD: 1186060
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EcoLink
مواضيع:
كلمات المؤلف المفتاحية:
Audit Data Analytics | Expected Credit Loss | Key Audit Matter | Descriptive Approach | Predictive Approach | Probability of Default | Loss Given Default | Exposure at Default | Precision Rate | Bias Rate | Objective Element of Uncertainty | Subjective Element of Uncertainty | Ratio Analysis | Linear Regression | Logistic Regression | Classification Tree | Process Mining | Text Analysis
رابط المحتوى:
صورة الغلاف QR قانون

عدد مرات التحميل

16

حفظ في:
المستخلص: The objective of this paper is to construct a framework that proposes how to use Audit data analytics “ADA” in the audit of Expected Credit loss “ECL” uncertainty level as a Key Audit Matter “KAM” that aims to develop the role External Auditor to enhance auditing ECL. The framework will present the Methodology used to audit ECL (i.e. KAM), this stage will focus the main steps performed during the audit of ECL uncertainty (i.e. KAM), the paper illustrate how ADA predictive approach use to project the degree of ECL uncertainty. ADA tools used to audit ECL to verify and valid the accuracy of the model used by management to set those estimates (i.e. ECL estimates in order to stand on the elements of uncertainty which are the objective element (precision rare) and subjective element (management bias).

ISSN: 1110-1547