ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Numerical Simulation for Computing the Number of Limit Cycles of Generalized Abel Equation

العنوان بلغة أخرى: محاكاة رقمية لحساب عدد دورات الحد لمعادلة أبل العامة
المؤلف الرئيسي: حواري، لجين مخلص (مؤلف)
المؤلف الرئيسي (الإنجليزية): Huwari, Lujain Mukhles
مؤلفين آخرين: الكومي، نعيم (مشرف) , حمد، هادي (مشرف)
التاريخ الميلادي: 2021
موقع: نابلس
الصفحات: 1 - 77
رقم MD: 1247359
نوع المحتوى: رسائل جامعية
اللغة: الإنجليزية
الدرجة العلمية: رسالة ماجستير
الجامعة: جامعة النجاح الوطنية
الكلية: كلية الدراسات العليا
الدولة: فلسطين
قواعد المعلومات: Dissertations
مواضيع:
رابط المحتوى:
صورة الغلاف QR قانون

عدد مرات التحميل

10

حفظ في:
LEADER 05046nam a2200337 4500
001 1997678
041 |a eng 
100 |9 665523  |a حواري، لجين مخلص  |e مؤلف  |g Huwari, Lujain Mukhles 
245 |a Numerical Simulation for Computing the Number of Limit Cycles of Generalized Abel Equation 
246 |a محاكاة رقمية لحساب عدد دورات الحد لمعادلة أبل العامة 
260 |a نابلس  |c 2021 
300 |a 1 - 77 
336 |a رسائل جامعية 
502 |b رسالة ماجستير  |c جامعة النجاح الوطنية  |f كلية الدراسات العليا  |g فلسطين  |o 3763 
520 |a تصف دورات الحد (الحلول الدورية المعزولة) ظاهرة التذبذب التي يتم دراستها في مجالات بحثية مختلفة مثل الفيزياء والطب والمجموعات السكانية ... الخ. حيث يلاحظ انه يتم تمثيل بعض العمليات البيولوجية والفيزيائية في الطبيعة بدورات حد مستقرة. تأتي نقطة الاهتمام في هذه المشكلة من دراسة عدد المدارات المغلقة المعزولة لحقل متجه مستو متعدد الحدود والذي يعد جزءا من مشكلة هيلبرت السادسة عشر؛ حيث كانت هذه المشكلة واحدة من المشاكل الرئيسية في النظرية النوعية للمعادلات التفاضلية العادية. في هذا العمل، تم عرض كل من دورات الحد في المستوى الديكارتي وأنواع الاستقرار لدورات الحد، كما تم النظر في مجال الاتجاه الذي يصف بيانيا حلول المعادلات التفاضلية؛ فقد تمت مناقشة النظريات المتعلقة بوجود وعدم وجود دورات حدية، علاوة على ذلك، تم دراسة المعادلة التفاضلية الغير خطية والتي تسمى Abel differential equation. من جانب أخر تطرقت الرسالة إلى دورات الحد للمعادلات التفاضلية كثيرة الحدود من الدرجة الأولى ذات المعاملات الدورية، وبينت النتائج الحد الأقصى لعدد دورات الحد لهذه المعادلات والعمل على التحقق من هذه النتائج رقميا. علاوة على ذلك، تم تقديم دورات الحد للنظام التفاضلي المستوي (حقل متجه مستو). كما تم عرض خريطة Poincaré، وتعدد الدورات الحدية للنظام التفاضلي المستوي، ومعلمات متعددة من النظام التفاضلي. وكذلك تم تقديم عدد من دورات الحد غير القابلة للانكماش في نظام الأسطوانة مع مثال رقمي. المشكلة الأكثر تحديا في هذا العمل كانت في الحصول على أمثلة عددية بحيث تحتوي على أكثر من دورة حد واحدة من خلال اخذ فترات زمنية مناسبة بحيث تكون المعاملات والشروط الأولية متحققة في النظريات المطروحة. بينما كانت المشكلة الثانية هي استكشاف أمثلة على دورات الحد التي لها تعدد أكثر من دورة حدية واحدة. بعد دراسة دورات الحد، لا يزال هناك الكثير من العمل الذي يمكن القيام به في هذا المجال؛ خاصة لتوسيع دراسة دورات الحد في المجالات التالية: 1-دراسة الدورات الحدية للمعادلة التفاضلية اللاخطية من الرتبة الثانية. 2-دراسة الدورات الحدية للمعادلات التفاضلية المركبة. 3-دراسة وجود حلول دورية لمعادلات تفاضلية نسبية متعددة الحدود. 
653 |a المحاكاة الرقمية  |a الرياضيات المحوسبة  |a العمليات الفيزيائية  |a المعادلات التفاضلية  |a الدورات الحدية 
700 |9 665525  |a الكومي، نعيم  |e مشرف  |g Alkoumi, Naeem 
700 |a حمد، هادي  |g Hamad, Hadi  |e مشرف  |9 665071 
856 |u 9808-010-001-3763-T.pdf  |y صفحة العنوان 
856 |u 9808-010-001-3763-A.pdf  |y المستخلص 
856 |u 9808-010-001-3763-C.pdf  |y قائمة المحتويات 
856 |u 9808-010-001-3763-F.pdf  |y 24 صفحة الأولى 
856 |u 9808-010-001-3763-1.pdf  |y 1 الفصل 
856 |u 9808-010-001-3763-2.pdf  |y 2 الفصل 
856 |u 9808-010-001-3763-3.pdf  |y 3 الفصل 
856 |u 9808-010-001-3763-4.pdf  |y 4 الفصل 
856 |u 9808-010-001-3763-R.pdf  |y المصادر والمراجع 
856 |u 9808-010-001-3763-S.pdf  |y الملاحق 
930 |d y 
995 |a Dissertations 
999 |c 1247359  |d 1247359 

عناصر مشابهة