ارسل ملاحظاتك

ارسل ملاحظاتك لنا







High Breakdown Weighted LAD Regression Estimator

المصدر: مجلة القادسية للعلوم الإدارية والاقتصادية
الناشر: جامعة القادسية - كلية الادارة والاقتصاد
المؤلف الرئيسي: Uraibi, Hassan S. (Author)
مؤلفين آخرين: Alwan, Hatem Abd A. (Co-Author)
المجلد/العدد: مج24, ع1
محكمة: نعم
الدولة: العراق
التاريخ الميلادي: 2022
الصفحات: 405 - 409
ISSN: 1816-9171
رقم MD: 1269663
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EcoLink
مواضيع:
كلمات المؤلف المفتاحية:
Weighted LAD | Masking and Swamping | Robust Location and Scale Estimators
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02540nam a22002297a 4500
001 2023328
041 |a eng 
044 |b العراق 
100 |9 532850  |a Uraibi, Hassan S.  |e Author 
245 |a High Breakdown Weighted LAD Regression Estimator 
260 |b جامعة القادسية - كلية الادارة والاقتصاد  |c 2022 
300 |a 405 - 409 
336 |a بحوث ومقالات  |b Article 
520 |b The least Absolute Deviation estimator has a high breakdown point probably reach 50%, so it provides a good alternative to the LS estimator when vertical outliers are present in the data set. However, It may lose this feature when the design matrix x is having at least one leverage point. Many authors have been efforts in the literature to assign a down weight to leverage point and suggested the weighted LAD regression, which is denoted as WLAD for increasing the breakdown point of LAD. Most weighted functions that are discussed in the literature are based on robust Mahalanobis distance, which is a familiar approach to identifying leverage points. Unfortunately, this robust distance could be affected in appearing high leverage points or when the masking and swamping phenomena have happened. Consequently, robust Mahalanobis distance may not detect all leverage points, and then WLAD would be a non-robust method, and its estimator surely will break down. In this paper, we proposed improving Mahalanobis’s distance based on weighted fast and consistent high breakdown estimator location and scale matrix, which may make WLAD is more robust than the previous ones. The simulation studies have been done and the results of our proposed UWLAD is compared with AWLAD and GWLAD methods which well known in the literature. The result shows that the performance of the UWLAD method is more efficient and reliable than others. 
653 |a تحليل البيانات  |a الإحصاء التطبيقي  |a الانحدار الخطي  |a الرافعة المالية 
692 |b Weighted LAD  |b Masking and Swamping  |b Robust Location and Scale Estimators 
700 |9 676244  |a Alwan, Hatem Abd A.  |e Co-Author 
773 |4 الاقتصاد  |6 Economics  |c 041  |e Al-Qadisiyah Journal for Administrative & Economic Sciences  |f Maǧallaẗ al-qādisiyyaẗ li-l-ʻulūm al-idāriyyaẗ wa-al-iqtiṣādiyyaẗ  |l 001  |m مج24, ع1  |o 0478  |s مجلة القادسية للعلوم الإدارية والاقتصادية  |v 024  |x 1816-9171 
856 |u 0478-024-001-041.pdf 
930 |d n  |p y  |q n 
995 |a EcoLink 
999 |c 1269663  |d 1269663 

عناصر مشابهة