ارسل ملاحظاتك

ارسل ملاحظاتك لنا







A Review Study on Machine Learning Approaches on Coronavirus Big Data

المصدر: مجلة كلية المأمون
الناشر: كلية المأمون الجامعة
المؤلف الرئيسي: Shanshool, Abeer M. (Author)
مؤلفين آخرين: Ahmed H. Salman (Co-Author) , Hamad, Amaal Ghazi (Co-Author) , Saeed, Enas Mohammed Hussein (Co-Author)
المجلد/العدد: ع37
محكمة: نعم
الدولة: العراق
التاريخ الميلادي: 2022
الصفحات: 431 - 459
DOI: 10.36458/1253-000-037-016
ISSN: 1992-4453
رقم MD: 1315447
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EcoLink, IslamicInfo, HumanIndex
مواضيع:
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02540nam a22002777a 4500
001 2074920
024 |3 10.36458/1253-000-037-016 
041 |a eng 
044 |b العراق 
100 |9 697490  |a Shanshool, Abeer M.   |e Author 
245 |a A Review Study on Machine Learning Approaches on Coronavirus Big Data 
260 |b كلية المأمون الجامعة  |c 2022 
300 |a 431 - 459 
336 |a بحوث ومقالات  |b Article 
520 |b Information has the ability for protecting against unexpected events and controlling crises like CoronaVirus Disease COVID-19 pandemic. Because this pandemic has spread so quickly worldwide, only technology-driven management of data could give reliable information in order to help handle the situation. The goal of this research is to look at the potential of the technologies that are related to big data to control and regulate the transmission of COVID-19. To collect the important aspects, a systematic review was conducted using Preferred Reporting Items for Systematic Reviews and Meta-Analyses PRISMA criteria. The thirty-two most relevant documents for the qualitative analyses have been indicated in the present work. This research also identifies 10 potential data sources and 8 essential big data applications for studying virus infection trends, virus associations, transmission patterns, and differences of genetic modifications. Also, it looks at some of the drawbacks of big data, such as privacy concerns, unethical data use, and data exploitation. The research's results will offer fresh information to administrators and policymakers, allowing them to establish data-driven strategies for addressing and managing the COVID-19 epidemic. 
653 |a البيانات الضخمة  |a إدارة المعلومات  |a فيروس كورونا "كوفيد-19"  |a الرعاية الصحية 
700 |9 697491  |a Ahmed H. Salman  |e Co-Author 
700 |9 697495  |a Hamad, Amaal Ghazi  |e Co-Author 
700 |9 697498  |a Saeed, Enas Mohammed Hussein  |e Co-Author 
773 |4 العلوم الإنسانية ، متعددة التخصصات  |4 العلوم الاجتماعية ، متعددة التخصصات  |6 Humanities, Multidisciplinary  |6 Social Sciences, Interdisciplinary  |c 016  |e Al-Ma'mon College Journal  |f Maǧallaẗ kulliyyaẗ al-maʼmūn al-ǧāmiʻaẗ  |l 037  |m ع37  |o 1253  |s مجلة كلية المأمون  |v 000  |x 1992-4453 
856 |u 1253-000-037-016.pdf 
930 |d n  |p y  |q n 
995 |a EcoLink 
995 |a IslamicInfo 
995 |a HumanIndex 
999 |c 1315447  |d 1315447 

عناصر مشابهة