ارسل ملاحظاتك

ارسل ملاحظاتك لنا







An Integrated Model for Exploring Supply Chain Sustainability Drivers Using Big Data Analytics Capacities in the Context of Thinking Beyond COVID-19 in an Emerging Economy: Total Interpretive Modeling Approach

المصدر: المجلة العلمية للدراسات التجارية والبيئية
الناشر: جامعة قناة السويس - كلية التجارة بالاسماعيلية
المؤلف الرئيسي: Serag, Asmaa Abd El-Monem Mohamed (Author)
المجلد/العدد: مج13, ع3
محكمة: نعم
الدولة: مصر
التاريخ الميلادي: 2022
الشهر: يوليو
الصفحات: 69 - 113
DOI: 10.21608/jces.2022.267665
ISSN: 2090-3782
رقم MD: 1335120
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EcoLink
مواضيع:
كلمات المؤلف المفتاحية:
Supply Chain Sustainability SCS | Emerging Economies | Sustainability Drivers | Total Interpretive Structuring Modeling "TISM"
رابط المحتوى:
صورة الغلاف QR قانون

عدد مرات التحميل

13

حفظ في:
المستخلص: Sustainability of supply chain (SCS) has been an important research topic in the last two decades due to the changes in the surrounding environment. This research aims at exploring the drivers of SCS to tackle supply chain disruption in such pandemic in the context of particular emerging economy to achieve that total interpretive structuring model is used (TIPSM). The proposed methodology is used to testing the opinions of supply chain practitioners as well as a experts about the drivers of SCS in the emerging economy. The results reveal that there are 20 drivers of (SSC) that have influential relationship and indispensable links, in addition to the results have showed that financial support from the government and the supply chain partners are the most influencing drivers of SSC to tackle the situation of COVID-19. Then, Matricide Impacts Cruoses Multiplication Applique a un classement (MIMAC) analysis is used to classify drivers into different groups based on the driving power and dependence power. These results will assist industrial managers, practitioners, policy makers and government intuition to take initiatives for applying SC and SSC in the emerging economy by considering the recommended drivers.

ISSN: 2090-3782