ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Using Support Vector Regression to Investigate the Causal Relationship between Petroleum Consumption and Economic Growth in Egypt

المصدر: المجلة العلمية للاقتصاد والتجارة
الناشر: جامعة عين شمس - كلية التجارة
المؤلف الرئيسي: Ahmed, Sally Hossam Eldin (Author)
مؤلفين آخرين: Mostafa, Mostafa Galal (Advisor) , Abdel Aal, Medhat Mohamed Ahmed (Advisor)
المجلد/العدد: ع2
محكمة: نعم
الدولة: مصر
التاريخ الميلادي: 2022
الشهر: يوليو
الصفحات: 315 - 334
ISSN: 2636-2562
رقم MD: 1373009
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EcoLink
مواضيع:
كلمات المؤلف المفتاحية:
Support Vector Regression | Time Series Forecasting | Loss Function | Kernel Function | Empirical Risk Minimization | Structural Risk Minimization | Mean Square Error | Petroleum Consumption | Gasoline | Natural Gas
رابط المحتوى:
صورة الغلاف QR قانون

عدد مرات التحميل

3

حفظ في:
LEADER 02384nam a22002417a 4500
001 2124339
041 |a eng 
044 |b مصر 
100 |a Ahmed, Sally Hossam Eldin  |e Author  |9 727146 
245 |a Using Support Vector Regression to Investigate the Causal Relationship between Petroleum Consumption and Economic Growth in Egypt 
260 |b جامعة عين شمس - كلية التجارة  |c 2022  |g يوليو 
300 |a 315 - 334 
336 |a بحوث ومقالات  |b Article 
520 |b This paper deals with the application of support vector machine in financial time series forecasting. The paper investigates the causal relationship between disaggregated petroleum consumption and economic growth in Egypt using support vector regression. Petroleum consumption will be disaggregated into six main fuel types: Gasoline, Fuel Oil, Gas Oil, Kerosene, LPG (Liquefied Petroleum Gas) and Natural Gas. The results indicate that SVM provides a promising technique in time series forecasting. For natural gas model MSE in training set =0.005 and in validation set MSE=0.001. For gasoline model MSE in training set =0.003 and for validation set MSE=0.008. For gas oil model MSE in training set =0.004 and in validation set MSE=0.001. For fuel oil model MSE in training set =0.003 and in validation set MSE=0.002. For Kerosene model MSE in training set =0.003and in validation set MSE=0.01. Finally, for LPG model MSE in training set =0.006 and for validation set MSE=0.001, which indicate very high accuracy of the predicted models. 
653 |a القطاع الاقتصادي  |a استهلاك البترول  |a نقل التكنولوجيا  |a السلاسل الزمنية 
692 |b Support Vector Regression  |b Time Series Forecasting  |b Loss Function  |b Kernel Function  |b Empirical Risk Minimization  |b Structural Risk Minimization  |b Mean Square Error  |b Petroleum Consumption  |b Gasoline  |b Natural Gas 
700 |a Mostafa, Mostafa Galal  |e Advisor  |9 727149 
700 |a Abdel Aal, Medhat Mohamed Ahmed  |e Advisor  |9 432063 
773 |4 الاقتصاد  |4 الإدارة  |6 Economics  |6 Management  |c 030  |e Scientific Journal for Economic & Commerce  |f Al-Maġallah Al-ʿilmiyyah Lil-Iqtiṣād Wal Tiğārah  |l 002  |m ع2  |o 0527  |s المجلة العلمية للاقتصاد والتجارة  |v 052  |x 2636-2562 
856 |u 0527-052-002-030.pdf 
930 |d y  |p y  |q n 
995 |a EcoLink 
999 |c 1373009  |d 1373009