ارسل ملاحظاتك

ارسل ملاحظاتك لنا







يجب تسجيل الدخول أولا

The Impact of Artificial Intelligence on Enhancing EFL Writing Skills among High School Students

المصدر: مجلة العلوم التربوية والإنسانية
الناشر: كلية الامارات للعلوم التربوية
المؤلف الرئيسي: Alzahrani, Fahd Kamis J. (Author)
مؤلفين آخرين: Alotaibi, Haef Hussain (Co-Author)
المجلد/العدد: ع34
محكمة: نعم
الدولة: الإمارات
التاريخ الميلادي: 2024
الشهر: أبريل
الصفحات: 226 - 240
ISSN: 2709-0701
رقم MD: 1464595
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: +HumanIndex, +EduSearch
مواضيع:
كلمات المؤلف المفتاحية:
Artificial Intelligence (AI) | ChatGPT | EFL Writing Skills | High School Students | Experimental Study | Language Learning Technology | AI in Language Education
رابط المحتوى:
صورة الغلاف QR قانون

عدد مرات التحميل

20

حفظ في:
المستخلص: There has been a noticeable interest in the use of Artificial Intelligence (AI) at education field over the last couple of years. The current study aimed to examine the impact of AI, notably ChatGPT, on EFL writing skills among high school students. The study employed a pre-post test design, with intermediate-level EFL students (aged 14-16) engaging with ChatGPT over an eight-week intervention. The study took place in Jeddah, Saudi Arabia. The results, including paired-sample t-tests, showed improvements in most writing skills, task achievement (mean score increase from 3.0 to 5.2), coherence and cohesion (mean score increase from 3.2 to 5.0), and lexical resource (mean score increase from 3.0 to 4.4). Surprisingly, grammatical range and accuracy exhibited a mean score decrease from 3.0 to 2.9, signaling the need for deeper investigation. Overall writing skill significantly improved, as evidenced by the mean score increase from 12.3 to 17.4. Validating ChatGPT's evaluative function, over 90% agreement was found when compared to assessments by expert English teachers. These findings endorse the incorporation of AI in EFL curricula, highlighting both the potential and the necessity for an integrated pedagogical approach.

ISSN: 2709-0701