ارسل ملاحظاتك

ارسل ملاحظاتك لنا









Harnessing Artificial Intelligence for Marketing Innovation: Personalization Optimization and Ethical Challenges

المصدر: أبحاث اقتصادية معاصرة
الناشر: جامعة عمار ثليجي الاغواط - كلية العلوم الاقتصادية والتجارية وعلوم التسيير
المؤلف الرئيسي: Djaafari, Mohammed Ridha (Author)
المجلد/العدد: مج7, ع2
محكمة: نعم
الدولة: الجزائر
التاريخ الميلادي: 2024
الشهر: أكتوبر
الصفحات: 113 - 126
ISSN: 2602-7623
رقم MD: 1522221
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EcoLink
مواضيع:
كلمات المؤلف المفتاحية:
Artificial Intelligence (AI) | Marketing Innovation | Personalization | Ethical Considerations | Customer Engagement
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: Artificial Intelligence (AI) is revolutionizing the field of marketing, ushering in unprecedented advancements in how businesses connect with their customers. This research explores the profound impact of AI on marketing tactics, particularly its ability to customize customer experiences, refine advertising strategies, and streamline customer interactions. By harnessing AI technologies such as machine learning and natural language processing, companies can delve into extensive datasets, foresee consumer behaviors, and customize their marketing efforts to suit individual needs. Despite these advancements, the deployment of AI introduces critical ethical challenges, including concerns over data privacy, algorithmic bias, and transparency. This paper addresses these ethical dilemmas and suggests strategies to mitigate them, ensuring the responsible and effective use of AI in marketing. Through an extensive review of current literature and practical case studies, the research offers valuable insights for marketers, policymakers, and scholars. It emphasizes the necessity for ethical guidelines and strong frameworks in the realm of AI-driven marketing. The findings highlight the crucial balance between innovation and ethical considerations to build trust and elevate customer satisfaction in today's digital era.

ISSN: 2602-7623

عناصر مشابهة