ارسل ملاحظاتك

ارسل ملاحظاتك لنا









Single Index Model with Ordinal Data

المصدر: مجلة القادسية للعلوم الإدارية والاقتصادية
الناشر: جامعة القادسية - كلية الادارة والاقتصاد
المؤلف الرئيسي: Alshaybawee, Taha (Author)
مؤلفين آخرين: Jameel, Anaam (Co-Author)
المجلد/العدد: مج26, ع2
محكمة: نعم
الدولة: العراق
التاريخ الميلادي: 2024
الصفحات: 140 - 148
ISSN: 1816-9171
رقم MD: 1526648
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EcoLink
مواضيع:
كلمات المؤلف المفتاحية:
Ordinal Data | Prediction | Ordinal Results | Logistic Model
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: Modeling and forecasting ordinal outcomes has become a core study for many statisticians because of the many forms of data encountered in real life, that have such a format. Several authors have proposed different approaches in modeling this type of data either in classical approaches (Mc Cullagh, 1980) or from a Bayesian perspective (Albert and Chib, 1993) (Cowles et al., 1996). One commonly adopted method of modeling ordinal data is that the observed ordinal scores have a correspondence with the latent variable through a set of cut points. Sometimes there are some difficulties in estimation. One of these categories is koto. (Albert and Chib, 1993) proposed an ordinal model in a Bayesian framework that fuzzy-collaborates prior on the cut-point parameters. The approach is used to estimate these parameters through their posterior distribution. We then compare our results after prediction with ordinal logistic regression to see which methods through which we obtain the best estimates.

ISSN: 1816-9171

عناصر مشابهة