ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Image Denoising Base on SIFT and Chaotic Hopfield Neural Network Swarm Optimization

المصدر: المجلة العراقية لتكنولوجيا المعلومات
الناشر: الجمعية العراقية لتكنولوجيا المعلومات
المؤلف الرئيسي: جميل، شيماء محمد (Author)
المؤلف الرئيسي (الإنجليزية): Jameel, Shymaa Mohammed
المجلد/العدد: مج7, ع4
محكمة: نعم
الدولة: العراق
التاريخ الميلادي: 2017
الصفحات: 89 - 106
DOI: 10.34279/0923-007-004-008
ISSN: 1994-8638
رقم MD: 824949
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: HumanIndex
مواضيع:
كلمات المؤلف المفتاحية:
Image denoising | Hopfield neural | chaotic neural | chaotic Hopfield neural | CHNN | SIFT
رابط المحتوى:
صورة الغلاف QR قانون

عدد مرات التحميل

5

حفظ في:
المستخلص: Many techniques and filters were used in the image noise removal for different types of noises distributions and locations. The intelligent filters utilized the denoising functionality with a best accuracy and speed operation. In this paper, the technique suggest to image denoising uses the SIFT algorithm (Scale-invariants features transform) for detecting and describe local features in images and chaotic Hopfield neural network swarm optimization in order to detect and remove the some unwanted details and noise without blurring the denoised image. The SIFT algorithm was used to detect the local features of the important and references image features to help the chaotic neural network to avoid the wanted features without changing. Also to increase the chaotic neural network accuracy while the chaotic function used to develop the Hopfield neural network to avoid the local minima and weights optimization. An acceptable PSNR and MSE results comparing with others with a good image visions results.

ISSN: 1994-8638

عناصر مشابهة