ارسل ملاحظاتك

ارسل ملاحظاتك لنا







On The Excess of Hadamard Matrix

المصدر: مجلة العلوم الإنسانية والتطبيقية
الناشر: الجامعة الأسمرية الإسلامية زليتن - كليتى الآداب والعلوم
المؤلف الرئيسي: Leghwel, Abd Alrzak M. (Author)
مؤلفين آخرين: Lashhab, Mohammed I. (Co-Author)
المجلد/العدد: ع20
محكمة: نعم
الدولة: ليبيا
التاريخ الميلادي: 2011
الصفحات: 1 - 30
رقم MD: 829055
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: HumanIndex
مواضيع:
رابط المحتوى:
صورة الغلاف QR قانون

عدد مرات التحميل

1

حفظ في:
LEADER 02516nam a22002177a 4500
001 1587472
041 |a eng 
044 |b ليبيا 
100 |9 444253  |a Leghwel, Abd Alrzak M.  |e Author 
245 |a On The Excess of Hadamard Matrix 
260 |b الجامعة الأسمرية الإسلامية زليتن - كليتى الآداب والعلوم  |c 2011 
300 |a 1 - 30 
336 |a بحوث ومقالات  |b Article 
520 |b A (-1, 1) -matrix is a matrix whose only entries are the numbers -1 or 1. In this paper for the most part we will be interested in special (-1,1) -matrices called Hadamard matrices. A Hadamard matrix of order n is an n x n (-1,1) - matrix H, satisfying H'H = H'H = nIn, where H' denotes the transpose of H and In is the identity matrix of order n. If H is a Hadamard matrix of order n, let w(H) = number of plus ones in H and let σ (H) = sum of all the entries of H. The numbers w(H) and σ (H) are called the weight of H and the excess of H, respectively. Further let w(n)= max { w(H) :H EΩ (n) } and σ (n)= max { σ (H) : H EΩ(n) } where Ω(n) is the class of all Hadamard matrices of order n. We call w(n) and σ (n) the maximum weight and the maximum excess of the class Q(n), respectively. The functions w and a were first introduced by Schmidt (1973) and subsequently studied by Schmidt and Wang (1977), Best (1977), Enomoto and Miyamoto (1980), Hammer, Levingston, Seberry (1978), and many other authors. The purpose of this paper is to report on what progress has been made on the maximum excess problem or equivalently the problem of maximum weight. In this paper, we first derive the relationship between w(H) and σ (H) as well as between w(n) and σ (n). The paper then proceeds to elaborate on the papers by Schmidt and Wang (1977) and Best (1977). Perhaps a key and most useful result in this paper is the inequality σ (n) ≤ n√n obtained by Best (1977). We conclude this paper by giving some results and examples of Hadamard matrices with maximum excess. 
653 |a مصفوفة هدامارد  |a الكيمياء العضوية  |a المركبات الحيوية 
773 |4 العلوم الإنسانية ، متعددة التخصصات  |6 Humanities, Multidisciplinary  |c 014  |l 020  |m ع20  |o 1582  |s مجلة العلوم الإنسانية والتطبيقية  |t Journal of Humanities and Applied Sciences  |v 000 
700 |9 433630  |a Lashhab, Mohammed I.  |e Co-Author 
856 |u 1582-000-020-014.pdf 
930 |d y  |p y 
995 |a HumanIndex 
999 |c 829055  |d 829055 

عناصر مشابهة