LEADER |
01968nam a22002537a 4500 |
001 |
1716275 |
024 |
|
|
|3 10.33948/0584-026-004-010
|
041 |
|
|
|a eng
|
044 |
|
|
|b السعودية
|
100 |
|
|
|9 524816
|a Oufaida, Houda
|e Author
|
245 |
|
|
|a Minimum Redundancy And Maximum Relevance For Single And Multi Document Arabic Text Summarization
|
260 |
|
|
|b جامعة الملك سعود
|c 2014
|
300 |
|
|
|a 450 - 461
|
336 |
|
|
|a بحوث ومقالات
|b Article
|
520 |
|
|
|b Automatic text summarization aims to produce summaries for one or more texts using machine techniques. In this paper, we propose a novel statistical summarization system for Arabic texts. Our system uses a clustering algorithm and an adapted discriminant analysis method: mRMR (minimum redundancy and maximum relevance) to score terms. Through mRMR analysis, terms are ranked according to their discriminant and coverage power. Second, we propose a novel sentence extraction algorithm which selects sentences with top ranked terms and maximum diversity. Our system uses minimal language-dependant processing: sentence splitting, tokenization and root extraction. Experimental results on EASC and TAC 2011 Multi Lingual datasets showed that our proposed approach is competitive to the state of the art systems.
|
653 |
|
|
|a اللسانيات الحاسوبية
|a الخوارزميات
|a اللغة العربية
|
692 |
|
|
|b Arabic Text Summarization
|b Sentence Extraction
|b Mrmr
|b Minimum Redundancy
|b Maximum Relevance
|
700 |
|
|
|9 524818
|a Nouali, Omar
|e Co-Author
|
700 |
|
|
|9 524819
|a Blache, Philippe
|e Co-Author
|
773 |
|
|
|c 010
|e Journal of King Saud University (Computer and Information Sciences)
|f Maǧalaẗ ǧamʼaẗ al-malīk Saud : ùlm al-ḥasib wa al-maʼlumat
|l 004
|m مج26, ع4
|o 0584
|s مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
|v 026
|x 1319-1578
|
856 |
|
|
|u 0584-026-004-010.pdf
|
930 |
|
|
|d y
|p y
|
995 |
|
|
|a science
|
999 |
|
|
|c 973382
|d 973382
|