ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Clustering and Classification of Email Contents

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Alsmadi, Izzat (Author)
مؤلفين آخرين: Alhami, Ikdam (Co-Author)
المجلد/العدد: مج27, ع1
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2015
الصفحات: 46 - 57
DOI: 10.33948/0584-027-001-005
ISSN: 1319-1578
رقم MD: 973502
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Emails Classification | Document Similarity | Document Classification | Feature Extraction | Subject Classification | Content Classification
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02026nam a22002417a 4500
001 1716388
024 |3 10.33948/0584-027-001-005 
041 |a eng 
044 |b السعودية 
100 |9 524917  |a Alsmadi, Izzat  |e Author 
245 |a Clustering and Classification of Email Contents 
260 |b جامعة الملك سعود  |c 2015 
300 |a 46 - 57 
336 |a بحوث ومقالات  |b Article 
520 |b Information users depend heavily on emails’ system as one of the major sources of communication. Its importance and usage are continuously growing despite the evolution of mobile applications, social networks, etc. Emails are used on both the personal and professional levels. They can be considered as official documents in communication among users. Emails’ data mining and analysis can be conducted for several purposes such as: Spam detection and classification, subject classification, etc. In this paper, a large set of personal emails is used for the purpose of folder and subject classifications. Algorithms are developed to perform clustering and classification for this large text collection. Classification based on NGram is shown to be the best for such large text collection especially as text is Bi-language (i.e. with English and Arabic content). 
653 |a تكنولوجيا الاتصالات  |a البريد الإلكتروني  |a أمن المعلومات  |a شبكات التواصل الاجتماعي 
692 |b Emails Classification  |b Document Similarity  |b Document Classification  |b Feature Extraction  |b Subject Classification  |b Content Classification 
773 |c 005  |e Journal of King Saud University (Computer and Information Sciences)  |f Maǧalaẗ ǧamʼaẗ al-malīk Saud : ùlm al-ḥasib wa al-maʼlumat  |l 001  |m مج27, ع1  |o 0584  |s مجلة جامعة الملك سعود - علوم الحاسب والمعلومات  |v 027  |x 1319-1578 
700 |9 524918  |a Alhami, Ikdam  |e Co-Author 
856 |u 0584-027-001-005.pdf 
930 |d y  |p y  |q n 
995 |a science 
999 |c 973502  |d 973502 

عناصر مشابهة