ارسل ملاحظاتك

ارسل ملاحظاتك لنا









Signs World Atlas: A Benchmark Arabic Sign Language Database

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Shohieb, Samaa M. (Author)
مؤلفين آخرين: Elminir, Hamdy K. (Co-Author) , Riad, A. M. (Co-Author)
المجلد/العدد: مج27, ع1
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2015
الصفحات: 68 - 76
DOI: 10.33948/0584-027-001-007
ISSN: 1319-1578
رقم MD: 973518
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Sign Language Recognition | Manual Signs | Non Manual Signs | Arabic Sign Language | Database
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: Research has increased notably in vision-based automatic sign language recognition (ASLR). However, there has been little attention given to building a uniform platform for these purposes. Sign language (SL) includes not only static hand gestures, finger spelling, hand motions (which are called manual signs ‘‘MS”) but also facial expressions, lip reading, and body language (which are called non-manual signs ‘‘NMS”). Building up a database (DB) that includes both MS and NMS is the main first step for any SL recognition task. In addition to this, the Arabic Sign Language (ArSL) has no standard database. For this purpose, this paper presents a DB developed for the ArSL MS and NM signs which we call Signs World Atlas. The postures, gestures, and motions included in this DB are collected in lighting and background laboratory conditions. Individual facial expression recognition and static hand gestures recognition tasks were tested by the authors using the Signs World Atlas, achieving a recognition rate of 97% and 95.28%, respectively.

ISSN: 1319-1578

عناصر مشابهة