ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Identification of Voip Encrypted Traffic Using A Machine Learning Approach

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Alshammari, Riyad (Author)
مؤلفين آخرين: Heywood, A. Nur Zincir (Co-Author)
المجلد/العدد: مج27, ع1
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2015
الصفحات: 77 - 92
DOI: 10.33948/0584-027-001-008
ISSN: 1319-1578
رقم MD: 973523
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Machine Learning | Encrypted Traffic | Robustness | Network Signatures
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: We investigate the performance of three different machine learning algorithms, namely C5.0, Ada Boost and Genetic programming (GP), to generate robust classifiers for identifying VoIP encrypted traffic. To this end, a novel approach (Alshammari and Zincir-Heywood, 2011) based on machine learning is employed to generate robust signatures for classifying VoIP encrypted traffic. We apply statistical calculation on network flows to extract a feature set without including payload information, and information based on the source and destination of ports number and IP addresses. Our results show that finding and employing the most suitable sampling and machine learning technique can improve the performance of classifying VoIP significantly

ISSN: 1319-1578

عناصر مشابهة