LEADER |
01828nam a22002417a 4500 |
001 |
1716403 |
024 |
|
|
|3 10.33948/0584-027-001-008
|
041 |
|
|
|a eng
|
044 |
|
|
|b السعودية
|
100 |
|
|
|9 524935
|a Alshammari, Riyad
|e Author
|
245 |
|
|
|a Identification of Voip Encrypted Traffic Using A Machine Learning Approach
|
260 |
|
|
|b جامعة الملك سعود
|c 2015
|
300 |
|
|
|a 77 - 92
|
336 |
|
|
|a بحوث ومقالات
|b Article
|
520 |
|
|
|b We investigate the performance of three different machine learning algorithms, namely C5.0, Ada Boost and Genetic programming (GP), to generate robust classifiers for identifying VoIP encrypted traffic. To this end, a novel approach (Alshammari and Zincir-Heywood, 2011) based on machine learning is employed to generate robust signatures for classifying VoIP encrypted traffic. We apply statistical calculation on network flows to extract a feature set without including payload information, and information based on the source and destination of ports number and IP addresses. Our results show that finding and employing the most suitable sampling and machine learning technique can improve the performance of classifying VoIP significantly
|
653 |
|
|
|a تكنولوجيا المعلومات
|a الخوارزميات الجينية
|a حركة المرور
|
692 |
|
|
|b Machine Learning
|b Encrypted Traffic
|b Robustness
|b Network Signatures
|
773 |
|
|
|c 008
|e Journal of King Saud University (Computer and Information Sciences)
|f Maǧalaẗ ǧamʼaẗ al-malīk Saud : ùlm al-ḥasib wa al-maʼlumat
|l 001
|m مج27, ع1
|o 0584
|s مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
|v 027
|x 1319-1578
|
700 |
|
|
|9 524936
|a Heywood, A. Nur Zincir
|e Co-Author
|
856 |
|
|
|u 0584-027-001-008.pdf
|
930 |
|
|
|d y
|p y
|q n
|
995 |
|
|
|a science
|
999 |
|
|
|c 973523
|d 973523
|