ارسل ملاحظاتك

ارسل ملاحظاتك لنا







A Novel Hybrid Algorithm Of GSA With Kepler Algorithm For Numerical Optimization

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Sarafrazi, Soroor (Author)
مؤلفين آخرين: Nezamabadi-pour, Hossein (Co-Author) , Seydnejad, Saeid R. (Co-Author)
المجلد/العدد: مج27, ع3
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2015
الصفحات: 288 - 296
DOI: 10.33948/0584-027-003-005
ISSN: 1319-1578
رقم MD: 973655
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Numerical Function Optimization | Hybrid Algorithm | Swarm Intelligence | Astrophysical Concepts | Gravitational Search Algorithm | Kepler Algorithm
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: It is now well recognized that pure algorithms can be promisingly improved by hybridization with other techniques. One of the relatively new metaheuristic algorithms is Gravitational Search Algorithm (GSA) which is based on the Newton laws. In this paper, to enhance the performance of GSA, a novel algorithm called ‘‘Kepler’’, inspired by the astrophysics, is introduced. The Kepler algorithm is based on the principle of the first Kepler law. The hybridization of GSA and Kepler algorithm is an efficient approach to provide much stronger specialization in intensification and/or diversification. The performance of GSA–Kepler is evaluated by applying it to 14 benchmark functions with 20-1000 dimensions and the optimal approximation of linear system as a practical optimization problem. The results obtained reveal that the proposed hybrid algorithm is robust enough to optimize the benchmark functions and practical optimization problems.

ISSN: 1319-1578