ارسل ملاحظاتك

ارسل ملاحظاتك لنا









A Comparative Study Of A Teaching Learning Based Optimization Algorithm On Multi Objective Unconstrained And Constrained Functio

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Rao, R. Venkata (Author)
مؤلفين آخرين: Waghmare, G.G. (Co-Author)
المجلد/العدد: مج26, ع3
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2014
الصفحات: 332 - 346
DOI: 10.33948/0584-026-003-008
ISSN: 1319-1578
رقم MD: 973165
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Teaching Learning Based Optimization | Multi Objective Optimization | Unconstrained And Constrained Benchmark Functions
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: Multi-objective optimization is the process of simultaneously optimizing two or more conflicting objectives subject to certain constraints. Real-life engineering designs often contain more than one conflicting objective function, which requires a multi-objective approach. In a single-objective optimization problem, the optimal solution is clearly defined, while a set of trade-offs that gives rise to numerous solutions exists in multi-objective optimization problems. Each solution represents a particular performance trade-off between the objectives and can be considered optimal. In this paper, the performance of a recently developed teaching–learning-based optimization (TLBO) algorithm is evaluated against the other optimization algorithms over a set of multi-objective unconstrained and constrained test functions and the results are compared. The TLBO algorithm was observed to outperform the other optimization algorithms for the multi-objective unconstrained and constrained benchmark problems.

ISSN: 1319-1578