LEADER |
01982nam a22002657a 4500 |
001 |
1716905 |
024 |
|
|
|3 10.33948/0584-029-002-002
|
041 |
|
|
|a eng
|
044 |
|
|
|b السعودية
|
100 |
|
|
|9 525326
|a Zribi, Ines
|e Author
|
245 |
|
|
|a Morphological Disambiguation Of Tunisian Dialect
|
260 |
|
|
|b جامعة الملك سعود
|c 2017
|
300 |
|
|
|a 147 - 155
|
336 |
|
|
|a بحوث ومقالات
|b Article
|
520 |
|
|
|b In this paper, we propose a method to disambiguate the output of a morphological analyzer of the Tunisian dialect. We test three machine learning techniques that classify the morphological analysis of each word token into two classes: true and false. The class label is assigned to each analysis according to the context of the corresponding word in a sentence. In failure cases, we combine the results of the proposed techniques with a bigram classifier to choose only one analysis for a given word. We disambiguate the result of the morphological analyzer of the Tunisian Dialect Al-Khalil-TUN (Zribi et al., 2013b). We use the Spoken Tunisian Arabic Corpus STAC (Zribi et al., 2015) to train and test our method. The evaluation shows that the proposed method has achieved an accuracy performance of 87.32%.
|
653 |
|
|
|a اللغة العربية
|a اللهجات العربية
|a تونس
|a التحليل اللغوي
|
692 |
|
|
|b Tunisian Dialect
|b Spoken Language
|b Morphological Analysis
|b Morphological Disambiguation
|
700 |
|
|
|9 525328
|a Ellouze, Mariem
|e Co-Author
|
700 |
|
|
|9 524801
|a Belguith, Lamia Hadrich
|e Co-Author
|
700 |
|
|
|9 524819
|a Blache, Philippe
|e Co-Author
|
773 |
|
|
|c 002
|e Journal of King Saud University (Computer and Information Sciences)
|f Maǧalaẗ ǧamʼaẗ al-malīk Saud : ùlm al-ḥasib wa al-maʼlumat
|l 002
|m مج29, ع2
|o 0584
|s مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
|v 029
|x 1319-1578
|
856 |
|
|
|u 0584-029-002-002.pdf
|
930 |
|
|
|d y
|p y
|
995 |
|
|
|a science
|
999 |
|
|
|c 974083
|d 974083
|