ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Intrusion Detection Model Using Fusion Of Chi-Square Feature Selection And Multi Class SVM

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Ikram, Sumaiya Thaseen (Author)
مؤلفين آخرين: Cherukuri, Aswani Kumar (Co-Author)
المجلد/العدد: مج29, ع4
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2017
الصفحات: 462 - 472
DOI: 10.33948/0584-029-004-003
ISSN: 1319-1578
رقم MD: 974241
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Chi Square Feature Selection | Cross Validation | Intrusion Detection | Radial Basis Kernel | Support Vector Machine | Variance
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02731nam a22002417a 4500
001 1717043
024 |3 10.33948/0584-029-004-003 
041 |a eng 
044 |b السعودية 
100 |9 525471  |a Ikram, Sumaiya Thaseen  |e Author 
245 |a Intrusion Detection Model Using Fusion Of Chi-Square Feature Selection And Multi Class SVM 
260 |b جامعة الملك سعود  |c 2017 
300 |a 462 - 472 
336 |a بحوث ومقالات  |b Article 
520 |b Intrusion detection is a promising area of research in the domain of security with the rapid development of internet in everyday life. Many intrusion detection systems (IDS) employ a sole classifier algorithm for classifying network traffic as normal or abnormal. Due to the large amount of data, these sole classifier models fail to achieve a high attack detection rate with reduced false alarm rate. However by applying dimensionality reduction, data can be efficiently reduced to an optimal set of attributes without loss of information and then classified accurately using a multi class modeling technique for identifying the different network attacks. In this paper, we propose an intrusion detection model using chi-square feature selection and multi class support vector machine (SVM). A parameter tuning technique is adopted for optimization of Radial Basis Function kernel parameter namely gamma represented by ‘!’ and over fitting constant ‘C’. These are the two important parameters required for the SVM model. The main idea behind this model is to construct a multi class SVM which has not been adopted for IDS so far to decrease the training and testing time and increase the individual classification accuracy of the network attacks. The investigational results on NSL-KDD dataset which is an enhanced version of KDDCup 1999 dataset shows that our proposed approach results in a better detection rate and reduced false alarm rate. An experimentation on the computational time required for training and testing is also carried out for usage in time critical applications. 
653 |a علوم الحاسوب  |a قواعد البيانات  |a الخوارزميات 
692 |b Chi Square Feature Selection  |b Cross Validation  |b Intrusion Detection  |b Radial Basis Kernel  |b Support Vector Machine  |b Variance 
700 |9 525474  |a Cherukuri, Aswani Kumar  |e Co-Author 
773 |c 003  |e Journal of King Saud University (Computer and Information Sciences)  |f Maǧalaẗ ǧamʼaẗ al-malīk Saud : ùlm al-ḥasib wa al-maʼlumat  |l 004  |m مج29, ع4  |o 0584  |s مجلة جامعة الملك سعود - علوم الحاسب والمعلومات  |v 029  |x 1319-1578 
856 |u 0584-029-004-003.pdf 
930 |d y  |p y 
995 |a science 
999 |c 974241  |d 974241