ارسل ملاحظاتك

ارسل ملاحظاتك لنا







Predictive Cloud Resource Management Framework For Enterprise Workloads

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Balaji, Mahesh (Author)
مؤلفين آخرين: Cherukuri, Aswani Kumar (Co-Author) , Rao, G. Subrahmanya V. R. K. (Co-Author)
المجلد/العدد: مج30, ع3
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2018
الصفحات: 404 - 415
DOI: 10.33948/0584-030-003-009
ISSN: 1319-1578
رقم MD: 974447
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Cloud Computing | Predictive Modeling | Resource Management | Enterprise Workload
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02512nam a22002537a 4500
001 1717241
024 |3 10.33948/0584-030-003-009 
041 |a eng 
044 |b السعودية 
100 |9 525645  |a Balaji, Mahesh  |e Author 
245 |a Predictive Cloud Resource Management Framework For Enterprise Workloads 
260 |b جامعة الملك سعود  |c 2018 
300 |a 404 - 415 
336 |a بحوث ومقالات  |b Article 
520 |b The study proposes an innovative Predictive Resource Management Framework (PRMF) to overcome the drawbacks of the reactive Cloud resource management approach. Performance of PRMF was compared with that of a reactive approach by deploying a timesheet application on the Cloud. Key metrics of the simulated workload patterns were monitored and analyzed offline using information gain module present in PRMF to determine the key evaluation metric. Subsequently, the best-fit model for the key evaluation metric among Autoregressive Integrated Moving Average (ARIMA) (1 ≤ p ≤ 4, 0 <d< 2, 1 ≤ q ≤ 4), exponential smoothening (Single, Double & Triple) and Hidden Markov Model present in the PRMF library were determined. Best-fit model was used for predicting key evaluation metric. During real time, the validation module of PRMF would continuously compare the actual and predicted key evaluation metric. Best-fit model would be re-evaluated if 95% confidence level of the predicted value breaches the actual metric. For experiments performed in the current study, Request Arrival and ARIMA (2, 1, 3) were found to be the key evaluation metric and the best-fit model respectively. Proposed predictive approach performed better than the reactive approach while provisioning/deprovisioning instances during the real time experiments. 
653 |a الحوسبة السحابية  |a النمذجة التنبؤية  |a إدارة الموارد  |a قواعد المعلومات 
692 |b Cloud Computing  |b Predictive Modeling  |b Resource Management  |b Enterprise Workload 
700 |9 525474  |a Cherukuri, Aswani Kumar  |e Co-Author 
700 |9 525646  |a Rao, G. Subrahmanya V. R. K.  |e Co-Author 
773 |c 009  |e Journal of King Saud University (Computer and Information Sciences)  |f Maǧalaẗ ǧamʼaẗ al-malīk Saud : ùlm al-ḥasib wa al-maʼlumat  |l 003  |m مج30, ع3  |o 0584  |s مجلة جامعة الملك سعود - علوم الحاسب والمعلومات  |v 030  |x 1319-1578 
856 |u 0584-030-003-009.pdf 
930 |d y  |p y 
995 |a science 
999 |c 974447  |d 974447