ارسل ملاحظاتك

ارسل ملاحظاتك لنا









CLBP For Scale And Orientation Adaptive Mean Shift Tracking

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Sliti, Oumaima (Author)
مؤلفين آخرين: Hamam, Habib (Co-Author) , Amiri, Hamid (Co-Author)
المجلد/العدد: مج30, ع3
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2018
الصفحات: 416 - 429
DOI: 10.33948/0584-030-003-010
ISSN: 1319-1578
رقم MD: 974451
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Tracking | Motion | Texture
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: In this paper, we address the problem of tracking an object with pose and appearance changes, under possible occlusions by presenting an effective way to embed the texture information provided by the Local Binary Pattern (LBP), Local Ternary Pattern (LTP) and the Complete Local Binary Pattern (CLBP) in the mean shift framework. We combine the information of color distribution with variants of Local Binary Pattern texture for the purpose of robust tracking. Four adaptive scale and orientation mean shift trackers are proposed; the LBP_MS, LTP_MS, CLBP_MS1 and the CLBP_MS2. The last tracker can handle both textured and non-textured objects, and deals with the specific weaknesses of motion trackers, such as failures under specific conditions. As it can exploit more of the image information, we use seven public videos that contain a variety of challenges to illustrate the accuracy of the proposed approaches. The trackers successfully cope with fast moving objects, target scale and orientation changes, and prove to be more stable and less prone to drift away from the target than purely colored or feature-based ones.

ISSN: 1319-1578

عناصر مشابهة