ارسل ملاحظاتك

ارسل ملاحظاتك لنا







FSDE Forced Strategy Differential Evolution Used For Data Clustering

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Ramadas, Meera (Author)
مؤلفين آخرين: Abraham, Ajith (Co-Author) , Kumar, Sushil (Co-Author)
المجلد/العدد: مج31, ع1
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2019
الصفحات: 52 - 61
DOI: 10.33948/0584-031-001-005
ISSN: 1319-1578
رقم MD: 974545
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Mutation | Crossover | Centroid | Cluster Quality | Quantization Error | Index
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
المستخلص: Differential evolution algorithm has seen various changes through numerous researches. Performance of the various algorithms depends on the changes in mutation and crossover strategies. Here in this paper, we are proposing a new variant of differential evolution named Forced Strategy Differential Evolution (FSDE), by creating a new mutation strategy. This strategy uses two parameters for mutation: a constant parameter and a variable parameter. FSDE will be applied on clustering using the k means technique. Experiments were conducted for various standard benchmark functions. FSDE was compared with the classical DE, GA and PSO in the field of clustering and the cluster quality results are tabulated. The results obtained show that the strategy implemented is more efficient than the other mutation strategies. © 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

ISSN: 1319-1578