ارسل ملاحظاتك

ارسل ملاحظاتك لنا









Factors Influencing Intention to Teach Artificial Intelligence in Saudi Universities: A Structural Equation Model

المصدر: مجلة العلوم التربوية والدراسات الإنسانية
الناشر: جامعة تعز فرع التربة - دائرة الدراسات العليا والبحث العلمي
المؤلف الرئيسي: Bajaber, Samera Salem Abdullah (Author)
المجلد/العدد: ع41
محكمة: نعم
الدولة: اليمن
التاريخ الميلادي: 2024
الشهر: سبتمبر
الصفحات: 832 - 847
DOI: 10.55074/2152-000-041-030
ISSN: 2617-5908
رقم MD: 1517423
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EduSearch, HumanIndex
مواضيع:
كلمات المؤلف المفتاحية:
Performance Expectancy | Effort Expectancy | Social Influence | Facilitating Conditions | Artificial Intelligence
رابط المحتوى:
صورة الغلاف QR قانون

عدد مرات التحميل

4

حفظ في:
LEADER 02920nam a22002417a 4500
001 2261189
024 |3 10.55074/2152-000-041-030 
041 |a eng 
044 |b اليمن 
100 |9 805241  |a Bajaber, Samera Salem Abdullah  |e Author 
245 |a Factors Influencing Intention to Teach Artificial Intelligence in Saudi Universities:  |b A Structural Equation Model 
260 |b جامعة تعز فرع التربة - دائرة الدراسات العليا والبحث العلمي  |c 2024  |g سبتمبر 
300 |a 832 - 847 
336 |a بحوث ومقالات  |b Article 
520 |b This study aims to investigate factors affecting behavioral intention towards teaching AI in Saudi universities. A random sampling method was used. A total of 430 responses were received. There were 330 males (76.74%), and 100 females (32.25%). All participants were of Saudi nationality and spoke Arabic as their mother tongue. To investigate sample data and assess model fit, this study employs structural equation modeling (SEM). A self-report 15- item survey instrument was developed specifically for this research study, based on Technology Acceptance Model (TAM). Study variables showed significant correlations at the .01 level. BI correlates positively with Performance expectancy (PE), Effort expectancy (EE), Social influence (SI)and Facilitating conditions (FC) (r = .555, .655, .630 and .615 respectively). Each of PE, EE, SI made significant individual contributions to the prediction of BI. The results indicated that the following beta weights which represented the relative contribution of PE, EE, SI and FC to the prediction were observed. PE (b = .411, t = 5.890, P < 0.01), EE (b = .333, t = 5.780, P < 0.01), SI (b = .297, t = 5.230, P < 0.01), and FC (b = .299, t = 5.232, P < 0.01). Together they yielded a coefficient of multiple regression (R) of 0.788 and a multiple correlation square of 0.784. With regard to the academic contribution, this work builds upon previously established and validated literature while simultaneously providing a new conceptual model. 
653 |a نمذجة المعادلة الهيكلية  |a الذكاء الاصطناعي  |a المرحلة الجامعية  |a السعودية 
692 |b Performance Expectancy  |b Effort Expectancy  |b Social Influence  |b Facilitating Conditions  |b Artificial Intelligence 
773 |4 العلوم الإنسانية ، متعددة التخصصات  |4 العلوم الاجتماعية ، متعددة التخصصات  |6 Humanities, Multidisciplinary  |6 Social Sciences, Interdisciplinary  |c 030  |e Humanities and Educational Sciences Journal  |f Maǧallaẗ al-ʿulūm al-tarbawiyyaẗ wa-al-dirāsāt al-insāniyyaẗ  |l 041  |m ع41  |o 2152  |s مجلة العلوم التربوية والدراسات الإنسانية  |v 000  |x 2617-5908 
856 |u 2152-000-041-030.pdf 
930 |d y  |p y  |q n 
995 |a EduSearch 
995 |a HumanIndex 
999 |c 1517423  |d 1517423