ارسل ملاحظاتك

ارسل ملاحظاتك لنا







يجب تسجيل الدخول أولا

التعويض الجزئي للقيم المفقودة

العنوان بلغة أخرى: Partial Imputation for Missing Values
المصدر: مجلة الباحث
الناشر: جامعة سرت - كلية التربية ودان الجفرة
المؤلف الرئيسي: الوردي، هيثم عبدالأمير (مؤلف)
المجلد/العدد: ع9
محكمة: نعم
الدولة: ليبيا
التاريخ الميلادي: 2015
الصفحات: 178 - 195
رقم MD: 765640
نوع المحتوى: بحوث ومقالات
اللغة: العربية
قواعد المعلومات: EduSearch
مواضيع:
رابط المحتوى:
صورة الغلاف QR قانون

عدد مرات التحميل

102

حفظ في:
المستخلص: إذا كانت مشكلة فقدان القيم، في مرحلة جمع البيانات، قد تمت بشكل عشوائي تام (MCAR)، فيمكننا معالجتها بالحذف (Deletion) بسهولة، أما إذا تم الفقدان بشكل عشوائي (MAR)، فنستطيع غالباً جعله عشوائي تام (MCAR) بالتعويض الجزئي (Partial imputation)، الذي يستند إلى إحلال قيم مقدرة محل مجموعة من القيم المفقودة وليس جميعها، وبإحدى طرق التعويض الأحادي للسهولة، المتوفرة في معظم الحزم الإحصائية، ثم استخدام الحذف للمعالجة. إن بساطة هذه الخطوات تمكن الباحث غير المتخصص، وهو غالباً ما يكون كذلك، من تطبيقها بمفرده، دون طلب مساعدة، يصعب غالباً الحصول عليها.

If the problem of missing values, during the data collection stage, happened completely at random (MCAR), we can simply use the deletion method to solve it. But if the missing happened at random (MAR), we can often make it as MCAR by partial imputation. That is based on replacing estimated values with some of the missing values instead of all of them, using one of the single imputation methods for simplicity, which are available in most of the statistical packages. Then we can use the deletion method as a solution. The ease of these steps enables unspecialized researcher to imply them alone, without asking help, which is usually hard to obtain.

عناصر مشابهة