المصدر: | المجلة العراقية لتكنولوجيا المعلومات |
---|---|
الناشر: | الجمعية العراقية لتكنولوجيا المعلومات |
المؤلف الرئيسي: | Humood, Waleed Rasheed (Author) |
المجلد/العدد: | مج8, ع4 |
محكمة: | نعم |
الدولة: |
العراق |
التاريخ الميلادي: |
2018
|
الشهر: | تموز |
الصفحات: | 140 - 153 |
DOI: |
10.34279/0923-008-004-011 |
ISSN: |
1994-8638 |
رقم MD: | 896029 |
نوع المحتوى: | بحوث ومقالات |
اللغة: | الإنجليزية |
قواعد المعلومات: | HumanIndex |
مواضيع: | |
كلمات المؤلف المفتاحية: |
Image | Enhancement | Wavelet | denoising | K-SVD
|
رابط المحتوى: |
المستخلص: |
تحتوي كل الصور الرقمية على بعض الدرجة من الضوضاء، خوارزمية تحسين الصورة تحاول ازالة هذا الضوضاء من الصورة. مثالياً، الصور الناتجة بعد ازالة الضوضاء سوف تكون خالية من الضوضاء او الضوضاء الصناعية المضافة. رفع الضوضاء من الصور الطبيعية المصابة بضوضاء جاوسن باستخدام تقنيات تحويل ويفليت فعالة جدا بسبب قدرتها والقابلية في مسك طاقة الاشارة في عدد محدد من قيم الطاقة المتحولة. في هذا البحث، معدل طاقة البكسل لكل نافذة الصورة المصابة بالضوضاء ستحسب باستخدام عملية تقدير الطاقة ثم تخزن في القاموس، الصورة المصابة بالضوضاء سوف تحلل باستخدام تحويل ويفليت وبعد ذلك يتم تطبيق خوارزمية ازالة الضوضاء كي – اس في دي، في نفس الوقت. مرشح المتوسط المعدل يطبق ايضا لرفع الضوضاء من الصورة المصابة بالضوضاء. أخيراً، الصورة المرفوع منها الضوضاء تأتي من المقارنة بين نتائج (خورزمية كي – أس في دي ومرشح المتوسط المعدل) واختيار البكسلات الملائمة يعتمد على قيم الطاقة المخزنة في القاموس. All digital images contain some degree of noise. Image enhancement algorithm attempts to remove this noise from the image. Ideally, the resulting de noised image will not contain any noise or added artifacts. Denoising of natural images corrupted by Gaussian noise using Wavelet transformation techniques is very effective because of its ability to capture the energy of a signal in few energy transform values. In this paper, mean pixel energy for each windows of noisy image will calculate by using the Energy Estimation operation then store in a dictionary. Noisy image decomposed using Wavelet transform and then applied K-SVD algorithm noise removal. In the same time, the modified mean filter is also applied to the de-noised image for noise removal. Finally, the de-noised image get from the comparison between (modified mean with K-SVD algorithm) outputs and select the appropriate pixels depend on the energy value stored on the dictionary. |
---|---|
ISSN: |
1994-8638 |