ارسل ملاحظاتك

ارسل ملاحظاتك لنا







A Comparative Study Of A Teaching Learning Based Optimization Algorithm On Multi Objective Unconstrained And Constrained Functio

المصدر: مجلة جامعة الملك سعود - علوم الحاسب والمعلومات
الناشر: جامعة الملك سعود
المؤلف الرئيسي: Rao, R. Venkata (Author)
مؤلفين آخرين: Waghmare, G.G. (Co-Author)
المجلد/العدد: مج26, ع3
محكمة: نعم
الدولة: السعودية
التاريخ الميلادي: 2014
الصفحات: 332 - 346
DOI: 10.33948/0584-026-003-008
ISSN: 1319-1578
رقم MD: 973165
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: science
مواضيع:
كلمات المؤلف المفتاحية:
Teaching Learning Based Optimization | Multi Objective Optimization | Unconstrained And Constrained Benchmark Functions
رابط المحتوى:
صورة الغلاف QR قانون
حفظ في:
LEADER 02167nam a22002417a 4500
001 1716062
024 |3 10.33948/0584-026-003-008 
041 |a eng 
044 |b السعودية 
100 |9 524696  |a Rao, R. Venkata  |e Author 
245 |a A Comparative Study Of A Teaching Learning Based Optimization Algorithm On Multi Objective Unconstrained And Constrained Functio 
260 |b جامعة الملك سعود  |c 2014 
300 |a 332 - 346 
336 |a بحوث ومقالات  |b Article 
520 |b Multi-objective optimization is the process of simultaneously optimizing two or more conflicting objectives subject to certain constraints. Real-life engineering designs often contain more than one conflicting objective function, which requires a multi-objective approach. In a single-objective optimization problem, the optimal solution is clearly defined, while a set of trade-offs that gives rise to numerous solutions exists in multi-objective optimization problems. Each solution represents a particular performance trade-off between the objectives and can be considered optimal. In this paper, the performance of a recently developed teaching–learning-based optimization (TLBO) algorithm is evaluated against the other optimization algorithms over a set of multi-objective unconstrained and constrained test functions and the results are compared. The TLBO algorithm was observed to outperform the other optimization algorithms for the multi-objective unconstrained and constrained benchmark problems. 
653 |a علوم الحاسوب  |a الخوارزميات  |a التصميم الهندسي 
692 |b Teaching Learning Based Optimization  |b Multi Objective Optimization  |b Unconstrained And Constrained Benchmark Functions 
700 |9 524698  |a Waghmare, G.G.  |e Co-Author 
773 |c 008  |e Journal of King Saud University (Computer and Information Sciences)  |f Maǧalaẗ ǧamʼaẗ al-malīk Saud : ùlm al-ḥasib wa al-maʼlumat  |l 003  |m مج26, ع3  |o 0584  |s مجلة جامعة الملك سعود - علوم الحاسب والمعلومات  |v 026  |x 1319-1578 
856 |u 0584-026-003-008.pdf 
930 |d y  |p y 
995 |a science 
999 |c 973165  |d 973165