ارسل ملاحظاتك

ارسل ملاحظاتك لنا







On the Modified Almost Unbiased Ridge Estimator in Linear Regression Model

المصدر: المجلة المصرية للدراسات التجارية
الناشر: جامعة المنصورة - كلية التجارة
المؤلف الرئيسي: Yehia, Enas Gawdat (Author)
المجلد/العدد: مج46, ع3
محكمة: نعم
الدولة: مصر
التاريخ الميلادي: 2022
الشهر: يوليو
الصفحات: 1 - 26
رقم MD: 1334105
نوع المحتوى: بحوث ومقالات
اللغة: الإنجليزية
قواعد المعلومات: EcoLink
مواضيع:
كلمات المؤلف المفتاحية:
Multicollinearity | Ridge Estimator | Almost Unbiased Ridge Estimator | Matrix Mean Squared Error | Monte Carlo Simulation
رابط المحتوى:
صورة الغلاف QR قانون

عدد مرات التحميل

1

حفظ في:
المستخلص: In order to overcome the negative effects caused by multicollinearity between the explanatory variables in the linear regression model, a new estimator namely modified almost unbiased ridge estimator is presented with its statistical characteristics in this paper. Also, the matrix mean squared error and squared bias criteria are adopted as a basis for comparisons between the new estimator and the ordinary least squares estimator, ridge estimator, and almost unbiased ridge estimator. Further, selection of the biasing parameter is discussed. Moreover, to check the performance of the new estimator versus the other estimators considered in this paper in the sense of scalar mean squared error, a study of Monte Carlo simulation and a real data example are conducted. The results indicate that in terms of scalar mean squared error, the new estimator, modified almost unbiased ridge estimator outperforms the others in use. So, it can be safely used when multicollinearity exists in a linear regression model.

عناصر مشابهة